Numerical Simulation of Hypervelocity Impact FEM-SPH Algorithm Based on Large Deformation of Material
نویسندگان
چکیده
In this paper, we first discuss the research status and application progress of the finite element method and the smoothed particle method. By analyzing the advantages of the smoothed particle method and the finite element method, a new coupling algorithm, namely FEM-SPH algorithm, is proposed. By the method of comparison, it shows that finite element method and SPH method in the simulation of large deformation problems each have advantages and disadvantages, the finite element method smoothed particle coupling algorithm is effective to achieve the performance of high computational efficiency and can naturally simulate large deformation problems across. In the process of calculation, the large deformation unit can be freely into an algorithm to facilitate the calculation accuracy and efficiency of three methods of numerical simulation. Through the study found, FEM-SPH algorithm not only overcome the defect of smooth particle tensile instability, but also overcomes the problem of low efficiency of finite element computation. To further test the FEM-SPH algorithm has advantages in the practical engineering, we have carried out the actual test to the example of the super high speed collision, concluded that, since the target of most of the computational domain is always finite element, smoothed particle focused only in contact with the projectile and target of local area, particle number is not much, the whole calculation process just ten minutes, computational efficiency has been greatly improved, at the same time in the simulation of large deformation, the advantage is very obvious .This provides a criterion for the actual project, depending on the specific material deformation mode and choose a more appropriate conversion algorithm.
منابع مشابه
Numerical Simulation of Squeezed Flow of a Viscoplastic Material by a Three-step Smoothed Particle Hydrodynamics Method
In the current work, the mesh free Smoothed Particle Hydrodynamics (SPH) method, was employed to numerically investigate the transient flow of a viscoplastic material. Using this method, large deformation of the sample and its free surface boundary were captured without the cumbersome process of the grid generation. This three-step SPH scheme employs an explicit predictor-corrector technique an...
متن کاملSPH-Based Numerical Simulations for Large Deformation of Geomaterial Considering Soil-Structure Interaction
The finite element method (FEM) is often used as the conventional method in computational geomechanics. However, dealing with the large deformation and failure is generally a difficult task for FEM since this method is suffered from grid distortions. In order to resolve this problem, the development of smoothed particle hydrodynamics (SPH) to simulate large deformation and failure of geomateria...
متن کاملPresenting a Modified SPH Algorithm for Numerical Studies of Fluid-Structure Interaction Problems
A modified Smoothed Particle Hydrodynamics (SPH) method is proposed for fluid-structure interaction (FSI) problems especially, in cases which FSI is combined with solid-rigid contacts. In current work, the modification of the utilized SPH concerns on removing the artificial viscosities and the artificial stresses (which such terms are commonly used to eliminate the effects of tensile and numeri...
متن کاملLarge Deformation Characterization of Mouse Oocyte Cell Under Needle Injection Experiment
In order to better understand the mechanical properties of biological cells, characterization and investigation of their material behavior is necessary. In this paper hyperelastic Neo-Hookean material is used to characterize the mechanical properties of mouse oocyte cell. It has been assumed that the cell behaves as continuous, isotropic, nonlinear and homogenous material for modeling. Then, by...
متن کاملSimulation of Cold Rolling Process Using Smoothed Particle Hydrodynamics (SPH)
Regarding the reported capabilities and the simplifications of the smoothed particle hydrodynamics (SPH) method, as a mesh-free technique in numerical simulations of the deformation processes, a 2-D approach on cold rolling process was provided. Using and examining SPH on rolling process not only caused some minor developments on SPH techniques but revealed some physical realities. The chosen t...
متن کامل